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Some rational approximations which share the properties of Pade and best
uniform approximations are considered. The approximations are best in the
Chebyshev sense, but the optimization is performed over subsets of the rational
functions which have specified derivatives at one end point of the approximation
interval. Explicit relationships between the Pade and uniform approximations
are developed assuming the function being approximated satisfies easily verified
constraints. The results are applied to the exponential function to determine the
existence of best uniform A-acceptable approximations.

I. INTRODUCTION

In this paper we consider rational approximations to a functionf(x) which
share the properties of both Pade and best uniform approximations. We
shall require that the function f(x) being approximated satisfy the basic
conditions:

(1) f(x) E C for x E [0, b], °< b < 00;

(2) f(x) E CM at x = 0, for fixed M ?': 1;

(3) dij(x)Jdxi 1"'=0 = (it) Ci , i = 0, 1, ... , M.

(1.1)

We then wish to study rational approximations to f(x) which are best in
the Chebyshev sense, but where the optimization is done over subsets of the
rationals which have specified derivatives at x = 0.

Let II", denote the collection of all real polynomials of degree at most m
and let II",.n denote the collection of all real rational functions r",.n(x) of the
form

rm.n(x) = q;;,1Cx) pix),
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where Pn E lln and qm E llm . We normalize by requiring q(O) = I and assume
that q(x) does not vanish on the interval of approximation. In addition, let
llm,n,k(f) be the subset of llm.n such that for 0 ~ k ~ m + n

rm,n,k(X) E llm,n,k(f) f--'t (dijdxi) rm,n,k(x)I,"~o = (i!) Ci , i = 0, 1,... , k. (1.3)

Now, consider the error Am,n,k associated with the best Chebyshev rational
approximation off(x) by members ofllm,n,k(f) on [0, b],

It has recently been shown by Lawson [6] that there exists at least one
member rex) Ellm,n,k(f) for which

max I rex) - f(x) [ = Am,n,k
O~x-:S:;b

and that a rational function rm-",n-v,k(X) is optimal in llm,n,k(f) in the
Chebyshev sense if and only if there exists a set of points 0 ~ Xl < Xg < ...
X N ~ b, N = m + n + 1 - k - min(fl', v) and a constant A for which

i = 1,2,..., N. (1.5)

In this paper we wish to develop a further characterization of these approxi­
mations under the assumption that the function f(x) is normal of degree
m + n. (The definition of normality, which depends only on the Ci of (Ll),
is given in Section 2). In Section 2 we show that if f(x) is normal and if (1.3)
is satisfied with k ;? m then rm,n,k(X) can be written as an m + n - k param­
eter function constructed from Pade approximants to f(x). As an example,
Section 3 considers the problem of finding the best uniform order constrained
approximations to the exponential function over the interval - 00 < x ~ O.
Section 4 is devoted to showing that if k ~ m + n - 3 then the resulting best
approximations are not A-acceptable, that is, they do not satisfy the condition
I r(z)I < 1 for all z such that Re(z) < O. Based on results shown previously
in [2] and [3], it is shown that if k > m + n - 3 then the best approxima­
tions are A-acceptable.

2. CHARACTERIZATION OF rm,n,lc USING PADE APPROXIMANTS

To establish a connection between the elements of llm,n,k(f) and Pade
approximants to f(x) we employ the following properties.
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DEFINITION. Given a rational function rex) = :L;~o y,xi/:L:'o OiXi, 00 = 1
and a set of constants c; , j = 0, 1,... , 7], 7] ;): m, then if the following system
of equations is satisfied

;

YJ - L o,c;_, = 0,
i~O

m

L 0iCH = 0,
,~o

property A(7]) is satisfied.

j = 0, 1,... , n;

j = n + 1,... ,7]

DEFINITION.. Given a set of constants c;, j = 0, 1,2,... , YJ + v - I,
Yj ;): 0, v;): 1, and c; ~ O,j < °if the Hankel determinant [4]

en C"-l

Hn= Cn+1 Cn
v

I C,,+v-1 Cn+v Cn

then property B(Yj, v) is satisfied.

DEFINITION. For a given function f(x), if the c" i = 0, 1, 2, ... , m + n
determined by (Ll) with M > m + n satisfy B(7), v) for all (Yj, v) such that
v";; m + 1 and 7) ,,;; n + 1 thenf(x) is said to be normal of degree m + n.

LEMMA 2.1. If f(x) is normal of degree m + n then each entry Ri,j(x) E

IIu of the Pade table of f(x) is uniquely determined in lowest terms and has
numerator of exact degree j and denominator of exact degree i, when i ,,;; m,
j ,,;; n.

Proof Because f(x) is normal, Ri,j(x) satisfies property A(i + j) and
properties BU,O, B(j+ 1, i), and BU, i + 1). The uniqueness and nonzero
value of the appropriate coefficients follows at once [4].

Assumingf(x) is normal of degree m + n we shall denote the unique Pade
approximations with numerator of degree n - i and denominator of degree
mby

R () Pm n-ix)
m,n-i X = Q . .() ,

m,n-t X
i = 0, 1, ... , n.
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For j :(; n we define a j parameter rational function based on these Pade
approximations as follows:

[J}{m,n,,(x; fLl , fL2 , ... , fLJ)

£?im,n,,(x; fLl , fL2 , , fLj)

.E?m,n,j(x; fLl , fL2 , , fLj)

(1 - fLl - fL2 - .. , - fLj) Pm,n-lx ) + L~~l fLiPm,n-i+1(X)

(1 - fLl - fL2 - ... - fLj) Qm,n-lx ) + L{~l fLiQm,n-i+1(X)
(2.1)

In the next two Lemmas we shall establish conditions which guarantee that
if rm,n,k(X) E IIm,n,k(f) then

rm,n,k(X) = [J}{m,njx; fLl , fL2 ,... , fLj)

whenj and (fLl, fL2 , ... , fLj) are suitably chosen.

LEMMA 2.2. Let lex) be normal of degree m + n and let rm,n,lcCx) satisfy
condition (1.3), where k ;:: m. Then there exists a unique set of constants

(fLl*, fL2 *,..., fLj*) such that

[Pm,n,ix) - qm,n,ix)f(x)] - [£?im,n,j(x; fLl*,..., fLj*)

- .E?m,n,j(x; fLl *,... , fLj*)f(X)] = O(xm+n+I) (2.2)

where j = m + n - k.

Proof From the form of [J}{m,n,j it is clear that for any (fLl , fL2 ,..., fLj) the
difference in Eq. (2.2) is O(xk+I).

Denote

Pm,n,k(X), qm.n,ix), Pm,n-lx ), and Qm,n-j(x) by

n

Pm,n,k(X) = L aixi,
i~O

m

qm,n,k(X) = L bixi

i~O

(2.3)

n-j

Pm,n-lx) = L am,n_j,ixi ,
i~O

m

Qm,n-lx ) = L bm,n_j.ixi.
i~O

The left-hand side of (2.2) may then be written in the form
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and

m

di = ai - I: blCi-l ,
l~O

i = k + 1,... , m + n; ai = 0 for i > n;

m

dm,n-v,i = am,n-v" - L bm,n-v,lCi-l ,
l~O

am,n-V.l = 0 for i > n - v.

v = 0, 1, ... ,j; i = k + L... , III + n;

From the form of the Pade approximants we observe that dm,n-v,i == 0 for
m + n - v ~ i. It follows that (2.2) is true if and only if a linear system of
the following form is satisfied:

CXL1 CXl,l CX1 ,1 CX1 ,1 flol e1

CX 2,1 CX2,2 CX2,2 CX 2,2 flo2 e2

A!J.T=
CXi,l CXi,2 CXi,i (Xi,i floi ei

CXj,l CXj,2 CXj,i CXu floj ej

= eT, j=m +n -k. (2.4)

In particular, CXi,i = dm,n-j,k+i, i = 1, 2, ... , m + n - k and (Xi,i-I =
dm,n-j,Hi - dm,n-i+i-Lk+i , i = 2, 3,..., m + n - k. By subtracting column
j - 1 from co1umnj, columnj - 2 from co1umnj - 1, etc., we observe that

since dm,n-i+l-U+i 0/= 0 for i = 1, 2, 3, ... , m + n - k. Consequently, (2.4)
has a unique solution (flol *, flo2 *, ..., flo/') which proves the theorem.

LEMMA 2.3. Given two functions

I'm,n(X) = f if;iXiII WiXi,
,~O i~O

which both satisfy property A(k), k ~ m, and also satisfy the condition

m m

L W,Ci- i = di = I f3,.Ci-i,
z=O i=O

i = k + 1,... , nz + n: (2.5)

then rm,n(x) = s""n(x) provided property B(n, m) is satisfied.
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Proof Property A(k) and Eqs. (2.5) specify two systems of m + n + 1
linear equations in m + n + 1 unknowns for determining the coefficients of
rm,n(x) and sm,n(x), The coefficients of these two systems are the same and
property B(n, m) guarantees a unique solution to the system.

THEOREM 2.1. Let f(x) be normal of degree m + n and let rm,n,ix)
satisfy condition (1.3) with k ;;;: m. Then there exists a unique set of constants
CJLI*, fL2 *,... , fLj *) such that

Proof The result follows at once from Lemmas 2.2 and 2.3

3. BEST-ORDER CONSTRAINED ApPROXIMATIONS TO eX

It is well known [1, 5] that the Pade approximations to the exponential
have the form

R () L~~o(U+k-m)!k!j(j+k)!m!(k-m)!)xm ( )
j,k X = Ltn~o ((j + k - m)!j!jU + k)! m! (j _ m)!)(-x)m 3.1

for all j ;;;: 0, k ;;;: 0, and hence eX is a normal function of any degree. It
follows from the previous section that if rm,n,ix) EIIm,n,k(eX), k ;;::: m then
rm,n,k(X) = gfm,n,lx; fLl ,... , fLj) where j = m + n - k. Because of the
continuity of eX and the continuity assumption on rm,n,k(X), study of the
points where eX - rm,n,ix) = 0 provides information about the possibility
of rm,n,k(X) satisfying (1.5). The following theorem characterizes the regions
in the m + n - k dimension Euclidean space where exactly m + n - k
exponential fittings occur. Excluded in this count is the exponential fit at
x = 0 and also the possible fit at - 00.

THEOREM 3.1. For any m, n > 0 and any j ~ n let gfm,njx; fLl ,fL2 ,... , fLj)
denote the functions defined by Eq. (2.1) when f(x) = eX. Then there exists a
unique set ofparameters (fLl*, fL2*'"'' fLJ *) such that

gfm,n,j(Xi ; fLl *, fL2 *,... , fLj *) - eXi = 0,

for arbitrary

i = 1, 2, ...,j

- 00 < Xl < X2 < .,. < Xj < ° where fLi* ;? 0, i = 1, 2, ... ,j, and
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Proof For j = 1 and n = m or n = m - 1 the result is established in
[2]. For j = 2 and n = m the result is established in [3]. To establish the
general result we shall use induction on k.

In general, for k = 1, n ?': 1 and any Xl < °we have

But by [8], Rm,n-1(X1) - eX1 and Rm,n(x1) - eX1 differ in sign. Hence, by the
same argument used in [2]. there exists a unique 01*, °~ 01* ~ 1 such that
&m,n,l(X1 ; 01*) = eX1

•

Now assume that for k = k the theorem is true for all n ?': k and any set
of k distinct negative x's. Let 9J< denote any particular set of these x's, and
consider the function

(3.2)

Setting 0k-c1 = 0, (3.2) becomes ~m,n-l,k(X; 01 , 02 ,... , 0k) while if ILl =
1 - 02 - ... - 0i<+l, (3.2) becomes ~m.n,i«x; 02 , 0a ,..., 0i<+l)' By the
assumption, there is a set {0i*}~~1 and a second set {ii;*}~~l such that

9fJm,n-1,i«X; 01*'"'' /Li<*) - eX = 0

~m,n,i«X; ii1*"'" iii<*) - eX = 0
(3.3)

for x E 9k. Now consider any point on the line segment connecting the
points (01*,02*"'" 0i<*, 0) and (1 - ii1* - ii2* - ... - iii<*' ii1*'
ii2*, ... , iii<*)' Denote the segment by

0i = (1 - 8) 0i* + 8iiH'

Then we have that

i = 2, 3,... , k + 1, 8 E [0, 1].
(3.4)

~m,n,i<+1(q; 01,02,'''' !-ti<+l) = (ex + (38)!(y + 68) (3.5)

where ex, (3, y, and (') are constants determined by q. An expression such as
(3.5) is continuous if y + oe =1= °and is strictly increasing, strictly decreasing
or constant. Since 0i ?': 0, i = 1,2,..., k + 1 on the line segment determined
by (3.4) we have from (3.1) that if q < 0, Y+ oe =1= O. Employing equations
(3.3) it follows that

(3.6)

for x E Sf},. Now consider some point Xi<+l < 0, Xi<+l 1= 9k . Observing that
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as x ~ - co, 81!m.n-Ulx; fLl *, fL2 *,... , fLk*) - eX and 81!m,n,k(X; iiI*, ii2*"'"
iiiC*) - eX differ in sign, these expressions must differ in sign for all x ¢ .elk •
Now

has the form of (3.5) but with different values of ex, {3, y, and o. Since con­
tinuity follows as before, there is a unique e, °< e< I for which (3.6) is
also satisfied with x = XiC+l . This completes the proof since eproduces the
required unique set of fLi , i = 1,2,... , k + 1.

Now consider the problem of determining the best order constrained
uniform approximation to eX for - co < x ~ 0. Employing the transforma­
tion x = [-t/(1 - t)], we observe that this equivalent to finding the best
approximation to

jet) = exp(-t/(I - t)), t E [0, 1), j(I) = ° (3.7)

which is a function matching the conditions of Section 1.
From Theorem 3.1 and the results of Lawson [6] summarized in Eq. (1.5)

we have the following result.

THEOREM 3.2. For k ~ m, the best order constrained Chebyshev approxi­
mation r(t)EIIm.n,ij(t)), wherej(t) is defined by (3.7), has theform

ret) = 81!m,nA-t/(I - t); fLl , fL2 ,... , fLj), j=m+n-k

where fLi ~ 0, i = 1, 2, ...,j and fLl + fL2 + ... + fLj ~ 1.

COROLLARY 3.1. For k ~ m, the best order constrained uniform approxi­
mation rex) EIIm,n,7cCeX), -co < x ~ 0, has theform

j = m + n - k,

where fLi ~ 0, i = 1, 2, ... ,j, and fLl + fL2 + ... + fLj ~ 1.

It has recently been shown by Saff and Varga [7] that certain sequences of
these best approximations converge geometrically to eX on - co < x ~ o.

4. A-ACCEPTABILITY OF ORDER CONSTRAINED ApPROXIMATIONS TO eX

Using Corollary 3.1 which provides a characterization of the form of best
order constrained approximation to eX along the negative real axis, we now
investigate the A-acceptability of these approximations. That is, we ask,
which of these best approximations satisfy the condition I r(z) [ < 1 for all
z such that Re(z) < O.
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(4.2)

The A-acceptability of approximations to eZ of the form 3?m,n,1(Z; f1'1 ,
fJ'2 , ..• , f1'j), with j = 1 and n = m, n = m - 1 and with j = 2, n = m have
been considered previously in [2, 3]. All members of these classes of approxi­
mation were shown to be A-acceptable for f1'i ;:?o 0, i = 1,2, .. ·,1: f1'1 + f1'2 +
... + f1'j < 1.

Thus we have the following immediate result.

THEOREM 4.1. Best order constrained, uniform approximations to eX over
- 00 < x < 0 are A-acceptable approximations to eZ when n = m and
k = 2m - 1 or 2m - 2 when n = m - 1 and k = 2m - 2.

To illustrate that Theorem 4.1 cannot be generalized to all m, n ;:?o 0,
k :); m consider

(l - f1'1)(l - z + (z2/2!) - (z3/3!» + f1'1(l - (3z/4) ,- (z2/4) - (z3/4 I»~ .
For y real, consider the difference

I ~ C"· )'2 I mJ (" )1 23,1.1 ly, fbI I - I ;;r 3,1,1 ly, f1'1

Using (4.1) it is easily verified that \ 3?3,1,1(iy; f1'JI 4;; 1 for all y E ( - 00, 00)

when 0 < f1'1 < 1 and thus the best approximation for this case cannot be
A-acceptable.

More generally, using results found in [1-3] it can be shown that

_ 2m-2 \[(1 _ )( _ ( 2 _ 2 )1/2) (m - 3)1 --L (m - 2)1 Y]
- Y I f1'1 Y m m (2m _ 3)! I fJ'1 (2m - 2)!

r(1 - )(. + ( 2 _ 2 )1/2) (m - 3)!...L em - 2)! Y 1
x _ f1'1 Y m m (2m _ 3)! i fbI (2m _ 2)! j

[
(m - 3)! ]21

- (1 - f1'1) f1'rCm)(m - 2) (2m _ 3)1

and we again see that I 2lm,m-2,1(iy; f1'1)\ 4;; 1 for all Y E (- 00, 00) for 0 <
111 < 1.
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Based on the above result and fact that individual Pade approximants on
or below the third subdiagona1 are not A-acceptable, we state the following
conjecture.

THEOREM 4.2. Best, order constrained, uniform approximations to eX over
- co < x ~ 0 are not A-acceptable approximations to eZ for any m ~ n ~ 0
when m ~ k ~ 2m - 3.

Proof By producing expansions such as given in (4.2) the correctness of
the theorem has been verified for the cases n = m, n = m - 1, and n = m - 2
all with k = m + n - 3.

In addition, the best approximations produced by Lawson [6] for
m = n = k, m = 2, 3, 4, 5 were studied and only the approximation for
m = 2 was found to be A-acceptable as expected.
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